当前位置:首页>新闻中心

20世纪中后期粉末冶金新技术和新材料新工艺回顾

    粉末冶金是一门新兴的材料制备技术。近代粉末冶金兴起于19世纪末20世纪初。至20世纪30年代,粉末冶金整套技术逐步形成,工业生产初具规模,对工艺过程及其机理的研究也取得了一定成果。20世纪中期,粉末冶金生产技术发展迅速,产品应用领域不断扩大,成为现代工业的重要组成部分。并在此基础上,为适应科学技术飞速发展对材料性能和成形技术提出的更高要求,开发了多项粉末冶金新工艺,包括:热等静压、燃烧合成、快速凝固、喷射成形、机械合金化、粉末注射成形、温压成形、快速全向压制、粉末锻造、热挤压、爆炸固结、大气压力烧结、微波烧结,等等。本文拟首先对其中几种重要新工艺的历史沿革和发展现状作一简要介绍。这些工艺有的已经产业化,有的正处于实用化阶段,应用前景看好。
1 粉末冶金新工艺
1.1 粉末锻造(Powder Forging,PF} H20世纪60年代末出现的粉末锻造,是对铁基粉末冶金材料和零件制造技术的重大突破。它将粉末冶金工艺与精密锻造相结合,使机械零件达到全致密和获得高性能成为可能,适合制造力学性能高的铁基结构零件,因而增加了粉末冶金机械零件的品种,扩大了应用领域。粉末锻造过程中,被加热到锻造温度的粉末压坯产生物质流动,填充阴模模腔,可成形具有较复杂形状的零件。粉末锻造产品密度可达到7.8 g/cm。(相对密度99.6 9/6),密度和组织分布均匀,晶粒细小,力学性能特别是动态力学性能好。例如,粉末锻造轴承外环的疲劳寿命是优质锻钢外环的3.5~4倍,且消除了常规铸造材料的各向异性。粉末锻造产品尺寸精度高,质量稳定,精加工量小。粉末锻造工艺节材、节能、工序少、生产成本低,例如,汽车传动定子凸轮成形工序由切削加工的7道减少到粉末锻造的1道;与机械加工方法相比,粉末锻造轴承外环和锥形滚柱节约材料5O 9/6;粉末锻造机枪加速装置零件成本降低5O 9/6以上。粉末锻造温度比常规锻造低100~200℃ ,可节能和延长模具寿命。其生产过程容易实现自动化。粉末锻造*初见于1941年,当时以海绵铁粉压坯通过热锻制成高射炮的弹药供给棘爪,其密度为7.8 g/cm。。
    但此后20年间,这项技术无甚进展。直到1968年,美国GM 汽车公司研制成功粉末锻造后桥差速器齿轮,并于1970年与Cincinnati公司合作建立世界上*条粉末锻造自动生产线,粉末锻造才重新兴起。但是,在从实验室转向工业生产时,由于受粉末质量、模具寿命、缺乏专用设备等条件的制约,以及主机厂对粉末锻造零件能否承受繁重负荷怀有疑虑,延缓了粉末锻造的发展。至8O年代中期,全球汽车工业的高速发展为粉末热锻技术提供了机遇,而且上述问题也逐一得到解决,才使粉末锻造零件生产规模明显扩大。Cincin—nati公司至1985年共生产定子凸轮2 000万件以上。尽管此零件表面要承受高频应力载荷,但使用中从未有过事故。1981年,日本丰田汽车公司全自动粉末锻造生产线投产,生产连杆和离合器外圈,连杆月生产能力14万件。至1992年,年生产连杆250万件,并在当时先进车型Lexus上大量装车使用。1986年,美国Ford公司开始生产粉末锻造连杆,供2种车型的1.9 L四缸发动机使用,以后陆续扩大到其他型号的发动机。至1991年,该公司采用的粉末锻造连杆不少于1 000万件,耗用铁粉1 000 t以上。据1990年报道,美国Ceracon公司制造的粉末锻造4601钢下孔钻头(用于钻井气动机构),重22.6 kg。
    德国Krebsoge公司于1992年建立了全自动粉末锻造生产线,连杆的生产率为5 s/件,当年粉末锻造连杆的使用量达到65万件。该公司采用粉末锻造连杆“断开工艺”,可减少切削加工工序,降低生产成本,提高连杆负载能力。Kreb—soge公司开发的Fe—Mo合金钢,是较为理想的粉末锻造材料。其合金元素含量低(合金中Mo的质量分数为0.85 9/6~1.05 9/6),降低了原料成本,而材料性能很好,热处理态极限拉伸强度达1 600MPa,伸长率接近1O 。粉末锻造主要用于生产汽车零件,如:发动机连杆、变速器凸轮、轴承圈、同步器齿环、发动机阀座、离合器毂、链锯链轮、棘轮、手动扳手,以及各种齿轮,等等。汽车连杆是发动机中承受强烈冲击和高动态应力的典型零件,粉末锻造连杆可靠性高,已在大量使用中得到证明。粉末锻造技术由于其产品性能和经济上的优势,发展前景令人乐观。
    1976年,中国科学院金属研究所与沈阳汽车齿轮厂合作,用Fe-Mo共还原粉末研制成粉末锻造汽车行星齿轮,并投入生产。1977年,中南工业大学与益阳粉末冶金研究所合作,用雾化Cu—Mo低合金钢粉制成拖拉机传动齿轮,并投入生产。同年,武汉钢铁公司粉末冶金厂与武汉工学院用粉末锻造制成25 kg的大型伞齿轮。1979年,益阳粉末冶金研究所建成拖拉机粉末锻造密封环生产线。
    1.2 热等静压(Hot Isostatic Press。HIP)E ]热等静压是在冷等静压(CIP)基础上发展起来的。冷等静压又称液静压或水静压,出现较早。1913年,MADDEN获冷等静压技术的专利。1936年,美国应用冷等静压技术制造钨钼条材,1942年用于制造钨钼管材。此后不久,德国应用冷等静压技术制造大型钨制品。1935年以后陶瓷工业在广泛应用冷等静压技术生产火花塞的瓷绝缘子和压电陶瓷等特殊陶瓷制品。前西德在2O世纪7O年代用冷等静压制造出d 300 mm×1 400 mm、质量为140kg的异形不锈钢过滤器,以及超大型绝缘电瓷。冷等静压能够成形凹形、空心和长细比大等复杂形状坯件,坯件密度均匀,强度较高,在粉末冶金成形工艺中占有重要地位。我国在2O世纪5O年代末建立了冷等静压实验装置。如果说冷等静压是粉末成形的一种特殊方法,那么,热等静压技术则在开发新材料和改进现有材料方面大显神威。已用热等静压制造和处理的材料有:工具钢、高温合金、硬质合金、稀土永磁、弥散强化和纤维强化铝合金、钛合金、铍、难熔金属、复合材料,等等。此外,热等静压技术还用来消除铸锭内部缺陷和修复贵重部件。
    热等静压技术始于1955年,当时美国BatteleColumbus实验室的DAYTON R等4名科学家,为了解决核燃料元件制造中锆包覆锆铀合金的问题,提出了“气压连接”的设想,建立了*台实验室用热等静压机。其压力缸以304不锈钢锻成,以氦为工作介质,样件置于缸体容器中,施加的等静压力使包套与芯棒紧密接触,在840~900℃保温24~36 h,通过扩散使界面连接。至1960年该所采用气压连接技术成功制造了350根核燃料元件。
    2O世纪6O年代,热等静压技术应用领域扩大,向高材料制备和加工的方向发展,并逐渐进入工业化生产。1965年,美国Kennametal公司与Battelle研究所合作,对硬质合金件进行致密化处理。1967年建立年产50t硬质合金的热等静压生产线,所生产的硬质合金品种约占公司全部品种的一半,产品强度和使用寿命大幅度提高,还生产了许多用常规工艺难以制造的制品。1969年,瑞典ASEA公司建立了*台预应力钢丝缠绕结构的Quintus冷热等静压设备,成为以后等静压设备的主要结构形式。2O世纪6O年代末7O年代初,美国坩锅公司和瑞典通用电气公司采用热等静压技术生产粉末高速钢,消除了合金元素的偏析,大幅度提高了合金元素的含量。7O年代,热等静压技术被用于制造粉末冶金高温合金涡轮盘和粉末冶金钛合金结构件。俄罗斯采用热等静压技术制备了尺寸为90 cm×115 cm,质量为300 kg的高温合金件,其强度达1 600 MPa。
    1978年,日本住友特殊金属公司采用热等静压技术生产铁氧体,获得高密度、细晶粒Mn—Zn铁氧体,将维氏硬度和抗弯强度都提高了15 。将热等静压与快速凝固、机械合金化、燃烧合成等新技术结合,是制取粉末冶金新材料的有效途径。据1999年北京国际热等静压会议报道,美、俄对机械合金化Ti一47.5Al一3Cr纳米粉进行热等静压,所获材料保持纳米晶粒,具有超塑性。日本将热等静压与燃烧合成相结合,制取了致密梯度材料和陶瓷材料。热等静压技术发展很快。1976年,全世界拥有热等静压设备99台,1980年为188台,1988年猛增到800台。随着热等静压技术应用范围不断扩大,对其产品质量和经济效益提出了更高要求,促使一些大型化设备相继建成并投入使用。瑞典ABB公司制造的大型热等静压机的工作室尺寸为d 1 600 mm×2 500 mm、*高工作压力105 MPa、*高工作温度1 260℃ 。
    我国热等静压技术的开发始于2O世纪6O年代。1966年,中国科学院金属研究所*采用螺旋式热等静压机制备稀有金属材料和连接核材料。1979年,*台预应力钢丝缠绕式热等静压设备在冶金部钢铁研究总院投产,有效缸体尺寸d 270mmX 700 mm。1990年,由川西机器厂与冶金部钢铁研究总院联合设计、川西机器厂制造的“双2000”小型热等静压机面市,该机工作压力200 MPa,工作温度2 000℃ 。同期,钢铁研究总院*出El热等静压机,其热区工作尺寸为d 450 mm×1 000mm。1988年全国拥有热等静压设备25台,1998年达63台。我国对热等静压技术在粉末固结、扩散连接、烧结制品和铸件致密化等方面的应用进行了研究,研制了高性能结构材料、复合材料、高温超导材料、金属间化合物、功能陶瓷材料、生物陶瓷等新材料,制订了硬质合金、粉末冶金高温合金、稀贵金属致密化处理的热等静压生产工艺和技术标准。
    1.3 快速凝固(Rapid Solidification。RS) lJ快速凝固技术是通过将金属和合金熔体快速冷却凝固制备材料的一种方法,金属和合金在快速凝固过程中,其组织结构和固溶能力发生很大变化。快速凝固技术是细化组织、消除偏析、提高合金固溶度,及制取非晶态粉末材料、微晶级和纳米晶级合金材料的有效手段。

本站部分内容属转载,版权归原作者所有,特此声明!如果侵犯了您的版权请来信告知,我们将尽快删除

最新资讯